代码随想录第二十一天

复习

深度优先遍历

递归
以中序为例

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
class Solution {
List<Integer> result = new ArrayList<>();
public List<Integer> inorderTraversal(TreeNode root) {
if (root == null) return result;
inorder(root);
return result;
}

private void inorder(TreeNode node){
if (node == null) return;
inorder(node.left);
result.add(node.val);
inorder(node.right);
}
}

迭代
前序

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
class Solution {

public List<Integer> preorderTraversal(TreeNode root) {
List<Integer> result = new ArrayList<>();
if (root == null) return result;
Stack<TreeNode> stack = new Stack<>();

stack.push(root);

while(!stack.isEmpty()){
TreeNode node = stack.pop();
result.add(node.val);
if (node.right != null) stack.push(node.right);
if (node.left != null) stack.push(node.left);
}

return result;
}
}

中序

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
class Solution {
public List<Integer> inorderTraversal(TreeNode root) {
List<Integer> result = new ArrayList<>();
if (root == null) return result;
Stack<TreeNode> stack = new Stack<>();
TreeNode cur = root;

while(cur != null || !stack.isEmpty()){
if (cur != null){
stack.push(cur);
cur = cur.left;
} else {
cur = stack.pop();
result.add(cur.val);
cur = cur.right;
}
}

return result;
}
}

后序

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
class Solution {
public List<Integer> postorderTraversal(TreeNode root) {
List<Integer> result = new ArrayList<>();
if (root == null) return result;

Stack<TreeNode> stack = new Stack<>();
stack.push(root);
while(!stack.isEmpty()){
TreeNode node = stack.pop();
result.add(node.val);
if (node.left != null) stack.push(node.left);
if (node.right != null) stack.push(node.right);
}

Collections.reverse(result);
return result;
}
}

统一迭代
以中序为例

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22

class Solution {
public List<Integer> inorderTraversal(TreeNode root) {
List<Integer> result = new ArrayList<>();
if (root == null) return result;
Stack<TreeNode> stack = new Stack<>();
stack.push(root);
while(!stack.isEmpty()){
TreeNode node = stack.pop();
if (node != null){
if (node.right != null) stack.push(node.right);
stack.push(node);
stack.push(null);
if (node.left != null) stack.push(node.left);
} else {
result.add(stack.pop().val);
}
}

return result;
}
}

DFS

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
class Solution {
List<List<Integer>> result = new ArrayList<>();
public List<List<Integer>> levelOrder(TreeNode root) {
if (root == null) return result;
dfs(root, 0);
return result;
}

private void dfs(TreeNode node, int depth){
if (node == null) return;
depth++;

if (depth > result.size()){
result.add(new ArrayList<Integer>());
}

result.get(depth - 1).add(node.val);

if (node.left != null) dfs(node.left, depth);
if (node.right != null) dfs(node.right, depth);
}
}

广度优先遍历

BFS

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

class Solution {

public List<List<Integer>> levelOrder(TreeNode root) {
List<List<Integer>> result = new ArrayList<>();
if (root == null) return result;
Queue<TreeNode> queue = new LinkedList<>();
queue.offer(root);

while (!queue.isEmpty()){
int length = queue.size();
List<Integer> itemList = new ArrayList<>();
while(length-- > 0){
TreeNode node = queue.poll();
itemList.add(node.val);
if (node.left != null) queue.offer(node.left);
if (node.right != null) queue.offer(node.right);
}
result.add(itemList);
}

return result;
}
}

226 翻转二叉树

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
class Solution {
public TreeNode invertTree(TreeNode root) {
if (root == null) return root;
swapChildren(root);
invertTree(root.left);
invertTree(root.right);

return root;
}

private void swapChildren(TreeNode node){
TreeNode temp = node.left;
node.left = node.right;
node.right = temp;
}
}

101 对称二叉树

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

class Solution {
public boolean isSymmetric(TreeNode root) {
if (root == null) return true;
return compare(root.left, root.right);
}
private boolean compare(TreeNode left, TreeNode right){
if (left == null && right == null) return true;
if (left == null || right == null || left.val != right.val) return false;
boolean compareOutside = compare(left.left, right.right);
boolean compareInside = compare(left.right, right.left);

return compareInside && compareOutside;
}
}

104 二叉树最大深度

1
2
3
4
5
6
7
class Solution {
public int maxDepth(TreeNode root) {
if (root == null) return 0;
return 1 + Math.max(maxDepth(root.left), maxDepth(root.right));
}
}

111 二叉树最小深度

递归

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
class Solution {
int mindepth = Integer.MAX_VALUE;
public int minDepth(TreeNode root) {
if (root == null) return 0;
dfs(root,0);

return mindepth;
}

private void dfs(TreeNode root, int depth){
if (root == null) return;
depth++;
if (root.left == null && root.right == null){
if (mindepth > depth){
mindepth = Math.min(depth, mindepth);
return;
}
}

if (root.left != null){
dfs(root.left, depth);
}
if (root.right != null){
dfs(root.right, depth);
}
}
}

迭代

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
class Solution {
public int minDepth(TreeNode root) {
if (root == null) return 0;
Queue<TreeNode> queue = new LinkedList<>();
queue.offer(root);
int depth = 0;
while(!queue.isEmpty()){
int length = queue.size();
depth++;
while (length-- > 0){
TreeNode node = queue.poll();
if (node.left == null && node.right == null){
return depth;
}

if (node.left != null) queue.offer(node.left);
if (node.right != null) queue.offer(node.right);
}
}

return depth;
}
}

222 完全二叉树节点个数

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27

class Solution {
public int countNodes(TreeNode root) {
if (root == null) return 0;

TreeNode left = root.left;
TreeNode right = root.right;
int leftDepth = 0;
int rightDepth = 0;

while (left != null){
left = left.left;
leftDepth++;
}

while (right != null){
right = right.right;
rightDepth++;
}

if (leftDepth == rightDepth){
return (2 << leftDepth) - 1;
}

return 1 + countNodes(root.left) + countNodes(root.right);
}
}

110 平衡二叉树

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
class Solution {
public boolean isBalanced(TreeNode root) {
return getHeight(root) != -1;
}

private int getHeight(TreeNode root){
if (root == null) return 0;
int left = getHeight(root.left);
if (left == -1) return -1;
int right = getHeight(root.right);
if (right == -1) return -1;

if (Math.abs(left - right) > 1){
return -1;
}

return 1 + Math.max(left, right);
}
}

257 二叉树的所有路径

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36

class Solution {
List<String> result = new ArrayList<>();
public List<String> binaryTreePaths(TreeNode root) {
if (root == null) return result;
List<Integer> paths = new ArrayList<>();

getPaths(root, paths);
return result;
}

private void getPaths(TreeNode root, List<Integer> paths){
paths.add(root.val);
if (root.left == null && root.right == null){
StringBuilder sb = new StringBuilder();
for (int i = 0; i < paths.size() - 1; i++){
sb.append(paths.get(i)).append("->");
}
sb.append(paths.get(paths.size() - 1));

result.add(sb.toString());

return;
}

if (root.left != null) {
getPaths(root.left, paths);
paths.remove(paths.size() - 1);
}
if (root.right != null) {
getPaths(root.right, paths);

paths.remove(paths.size() - 1);
}
}
}

404 左叶子之和

1
2
3
4
5
6
7
8
9
10
11
12
13
14
class Solution {
int sum = 0;
public int sumOfLeftLeaves(TreeNode root) {
if (root == null) return 0;
if (root.left != null && root.left.left == null && root.left.right == null){
sum += root.left.val;
}

if (root.left != null) sumOfLeftLeaves(root.left);
if (root.right != null) sumOfLeftLeaves(root.right);
return sum;
}
}

513 找树左下角的值

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22

class Solution {
public int findBottomLeftValue(TreeNode root) {
if (root == null) return 0;
Queue<TreeNode> queue = new LinkedList<>();
queue.offer(root);
int result = 0;
while(!queue.isEmpty()){
int length = queue.size();
for (int i = 0; i < length; i++){
TreeNode node = queue.poll();
if (i == 0){
result = node.val;
}

if (node.left != null) queue.offer(node.left);
if (node.right != null) queue.offer(node.right);
}
}
return result;
}
}
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
class Solution {
int val = 0;
int maxDepth = 0;
public int findBottomLeftValue(TreeNode root) {
if (root == null) return val;
dfs(root, 0);
return val;
}

private void dfs(TreeNode root, int depth){
depth++;
if (root.left == null && root.right == null){
if (depth > maxDepth){
maxDepth = depth;
val = root.val;
}
}
if (root.left != null) dfs(root.left, depth);
if (root.right != null) dfs(root.right, depth);

}
}

112 路径总和

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

class Solution {
public boolean hasPathSum(TreeNode root, int targetSum) {
if (root == null) return false;
targetSum -= root.val;
if (root.left == null && root.right == null){
if (targetSum == 0){
return true;
}
}
boolean left = hasPathSum(root.left, targetSum);
boolean right = hasPathSum(root.right,targetSum);
return left || right;
}
}

113 路径总和II

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
class Solution {
List<List<Integer>> result = new ArrayList<>();
public List<List<Integer>> pathSum(TreeNode root, int targetSum) {

if (root == null) return result;
List<Integer> paths = new ArrayList<>();
getPaths(root, paths, targetSum);
return result;
}

private void getPaths(TreeNode node, List<Integer> paths, int targetSum){
paths.add(node.val);
targetSum -= node.val;
if (node.left == null && node.right == null){
if (targetSum == 0){
result.add(new ArrayList<Integer>(paths));
}
}

if (node.left != null){
getPaths(node.left, paths, targetSum);
paths.remove(paths.size() - 1);
}

if (node.right != null){
getPaths(node.right, paths, targetSum);
paths.remove(paths.size() - 1);
}
}
}

106 从中序与后序遍历序列构造二叉树

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26

class Solution {
Map<Integer, Integer> map = new HashMap<>();
public TreeNode buildTree(int[] inorder, int[] postorder) {
if (inorder.length == 0) return null;
for (int i = 0; i < inorder.length; i++){
map.put(inorder[i], i);
}

return buildHelper(inorder, 0, inorder.length, postorder, 0, postorder.length);
}

private TreeNode buildHelper(int[] inorder, int inS, int inE, int[] postorder, int postS, int postE){
if (inS >= inE || postS >= postE) return null;

int rootVal = postorder[postE - 1];
int rootIndex = map.get(rootVal);
int lengthOfLeft = rootIndex - inS;
TreeNode root = new TreeNode(rootVal);

root.left = buildHelper(inorder, inS, rootIndex, postorder, postS, postS + lengthOfLeft);
root.right = buildHelper(inorder, rootIndex + 1, inE, postorder, postS + lengthOfLeft, postE - 1);

return root;
}
}

105 从前序与中序遍历序列构造二叉树

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
class Solution {
Map<Integer, Integer> map = new HashMap<>();
public TreeNode buildTree(int[] preorder, int[] inorder) {
if (preorder.length == 0) return null;

for (int i = 0; i < inorder.length; i++){
map.put(inorder[i], i);
}

return buildHelper(preorder, 0, preorder.length, inorder, 0, inorder.length);
}

private TreeNode buildHelper(int[] preorder, int preS, int preE, int[] inorder, int inS, int inE){
if (preS >= preE || inS >= inE) return null;

int rootVal = preorder[preS];
int rootIndex = map.get(rootVal);
int lenOfLeft = rootIndex - inS;
TreeNode root = new TreeNode(rootVal);

root.left = buildHelper(preorder, preS + 1, preS + lenOfLeft + 1, inorder, inS, rootIndex);
root.right = buildHelper(preorder, preS + lenOfLeft + 1, preE, inorder, rootIndex + 1, inE);
return root;
}
}

654 最大二叉树

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
class Solution {
public TreeNode constructMaximumBinaryTree(int[] nums) {
if (nums.length == 0) return null;
return constructHelper(nums, 0, nums.length);
}

private TreeNode constructHelper(int[] nums, int start, int end){
if (start >= end) return null;

int[] max = getMaximum(nums, start, end);
int maxValue = max[0];
int maxIndex = max[1];

TreeNode root = new TreeNode(maxValue);
root.left = constructHelper(nums, start, maxIndex);
root.right = constructHelper(nums, maxIndex + 1, end);

return root;

}

private int[] getMaximum(int[] nums, int start, int end){
int maxVal = Integer.MIN_VALUE;
int index = start;
for (int i = start; i < end; i++){
if (nums[i] > maxVal){
maxVal = nums[i];
index = i;
}
}

return new int[] {maxVal, index};
}
}

617 合并二叉树

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
class Solution {
public TreeNode mergeTrees(TreeNode root1, TreeNode root2) {
if (root1 == null && root2 == null) return null;

if (root1 == null && root2 != null) return root2;

if (root1 != null && root2 == null) return root1;

TreeNode root = new TreeNode(root1.val + root2.val);
root.left = mergeTrees(root1.left, root2.left);
root.right = mergeTrees(root1.right, root2.right);
return root;
}
}

700 二叉搜索树中的搜索

1
2
3
4
5
6
7
8
9
10
11
12
13

class Solution {
public TreeNode searchBST(TreeNode root, int val) {
if (root == null) return null;
if (root.val == val){
return root;
} else if (root.val > val){
return searchBST(root.left, val);
} else {
return searchBST(root.right, val);
}
}
}

98 验证二叉搜索树

中序递归判断数组

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
class Solution {
List<Integer> result = new ArrayList<>();

public boolean isValidBST(TreeNode root) {
if (root == null) return true;
inorder(root);
return isInOrder(result);
}

private void inorder(TreeNode root){
if (root == null) return;
inorder(root.left);
result.add(root.val);
inorder(root.right);
}
private boolean isInOrder(List<Integer> result){
for (int i = 1; i < result.size(); i++){
if (result.get(i - 1) >= result.get(i)) return false;
}
return true;
}
}

记录上一个node 比较root和node的大小

1
2
3
4
5
6
7
8
9
10
11
12
13
14
class Solution {
TreeNode max;
public boolean isValidBST(TreeNode root) {
if (root == null) return true;
boolean left = isValidBST(root.left);
if (!left) return false;

if (max != null && root.val <= max.val) return false;
max = root;

boolean right = isValidBST(root.right);
return right;
}
}

107 二叉树的层次遍历II

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26

class Solution {
List<List<Integer>> result = new ArrayList<>();
public List<List<Integer>> levelOrderBottom(TreeNode root) {
if (root == null) return result;
Queue<TreeNode> queue = new LinkedList<>();

queue.offer(root);

while(!queue.isEmpty()){
int length = queue.size();
List<Integer> item = new ArrayList<>();
while(length-- > 0){
TreeNode node = queue.poll();
item.add(node.val);
if (node.left != null) queue.offer(node.left);
if (node.right != null) queue.offer(node.right);
}
result.add(item);
}

Collections.reverse(result);

return result;
}
}

199 二叉树的右视图

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
class Solution {
List<Integer> result = new ArrayList<>();
public List<Integer> rightSideView(TreeNode root) {
if (root == null) return result;
Queue<TreeNode> queue = new LinkedList<>();

queue.offer(root);

while(!queue.isEmpty()){
int length = queue.size();
while(length-- > 0){
TreeNode node = queue.poll();
if (length == 0){
result.add(node.val);
}

if (node.left != null) queue.offer(node.left);
if (node.right != null) queue.offer(node.right);
}
}

return result;
}
}

530 二叉搜索树的最小绝对差

利用中序遍历二叉搜索树,比较当前值和之前的值的差值

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
class Solution {
List<Integer> result = new ArrayList<>();
public int getMinimumDifference(TreeNode root) {
if (root == null) return 0;
inorder(root);
int min = Integer.MAX_VALUE;
for (int i = 1; i < result.size(); i++){
int diff = result.get(i) - result.get(i -1);
if (diff < min) {
min = diff;
}
}

return min;
}

private void inorder(TreeNode node){
if (node == null) return;

inorder(node.left);
result.add(node.val);
inorder(node.right);
}
}

在中序遍历之中记录一个pre node 之后再记录min的差值,进行比较,二叉搜索树特性

1
2
3
4
5
6
7
8
9
10
11
12
13
14
class Solution {
int min = Integer.MAX_VALUE;
TreeNode pre;
public int getMinimumDifference(TreeNode root) {
if (root == null) return 0;
getMinimumDifference(root.left);

if (pre != null && Math.abs(pre.val - root.val) < min) min = Math.abs(pre.val - root.val);
pre = root;
getMinimumDifference(root.right);

return min;
}
}

501 二叉搜索树中的众数

利用map 前序遍历计数,然后再统计出现频率最多的数字
需要背语法

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32

class Solution {
Map<Integer, Integer> map = new HashMap<>();
List<Integer> result = new ArrayList<>();
public int[] findMode(TreeNode root) {
preorder(root);
List<Map.Entry<Integer, Integer>> mapList = map.entrySet().stream()
.sorted((c1, c2) -> c2.getValue().compareTo(c1.getValue()))
.collect(Collectors.toList());
result.add(mapList.get(0).getKey());
for (int i = 1; i < mapList.size(); i++) {
if (mapList.get(i).getValue() == mapList.get(i - 1).getValue()) {
result.add(mapList.get(i).getKey());
} else {
break;
}
}
return result.stream().mapToInt(Integer::intValue).toArray();
}

private void preorder(TreeNode root){
if (root == null) return;
if (map.containsKey(root.val)){
map.put(root.val, map.get(root.val) + 1);
} else {
map.put(root.val, 1);
}

preorder(root.left);
preorder(root.right);
}
}

一次中序遍历利用二叉搜索树特性
记录prenode后,记录count, 比较maxcount,等于添加到数组中,大于就清空原来的数组,再添加root

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
class Solution {
List<Integer> result = new ArrayList<>();
int maxCount = 0;
int count = 0;
TreeNode pre;
public int[] findMode(TreeNode root) {
inorder(root);
int[] res = new int[result.size()];
for (int i = 0; i < result.size(); i++) {
res[i] = result.get(i);
}
return res;
}

private void inorder(TreeNode root){
if (root == null) return;

inorder(root.left);
if (pre == null){
count = 1;
} else if (pre.val == root.val){
count++;
} else {
count = 1;
}

pre = root;

if (count > maxCount){
result.clear();
result.add(root.val);
maxCount = count;
} else if (count == maxCount){
result.add(root.val);
}

inorder(root.right);
}
}

迭代法同理,在处理node时同样的逻辑

236 二叉树的最近公共祖先

此题是自底向上查找,就是回溯
在二叉树中 后序遍历就是自底向上

如果有一个节点,发现左子树出现节点P,右子树出现节点q,或者相反,那么该节点就是公共祖先

如果遇到p 返回p如果遇到q返回q,如果左右子树不为空,中节点就是最近祖先
整体过程如图

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
class Solution {
public TreeNode lowestCommonAncestor(TreeNode root, TreeNode p, TreeNode q) {
if (root == null || root == p || root == q){
return root;
}

TreeNode left = lowestCommonAncestor(root.left, p, q);
TreeNode right = lowestCommonAncestor(root.right, p , q);

if (left != null && right != null) return root;

if (left == null && right != null) return right;
else if (left != null && right == null) return left;
else return null;

}
}